Bayesian Filtering and Integral Image for Visual Tracking
نویسندگان
چکیده
This paper describes contributions to two problems related to visual tracking: control model design and observation process design. We describe the use of kernel-based Bayesian filtering for the tracking control procedure, and feature-based tracking to improve the observation process of tracking. In the kernelbased Bayesian filtering framework, the analytical representation of density functions by density interpolation and density approximation for the likelihood and the posterior contributes to efficient sampling. Feature-based tracking combines rectangular features with edge oriented histogram so that the combined features are robust to illumination changes, partial occlusion, and clutter while capturing the spatial information of the target. The use of integral image allows the features to be efficiently evaluated. The effectiveness of both algorithms are demonstrated by object tracking results on real videos.
منابع مشابه
An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملEffect of Post-Reconstruction Gaussian Filtering on Image Quality and Myocardial Blood Flow Measurement with N-13 Ammonia PET
Objective(s): In order to evaluate the effect of post-reconstruction Gaussian filtering on image quality and myocardial blood flow (MBF) measurement by dynamic N-13 ammonia positron emission tomography (PET), we compared various reconstruction and filtering methods with image characteristics. Methods: Dynamic PET images of three patients with coronary artery disease (male-female ratio of 2:1; a...
متن کاملVisual Motion Estimation and Prediction: A Probabilistic Network Model for Temporal Coherence
We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate motion flows in the image sequences. Our theory is expressed in terms of the Bayesian generalization [10] of standard Kalman Filtering which allows us to solve temporal grouping in conjunction with ...
متن کاملNeural-bayesian Filtering Based on Monte Carlo Resampling for Visual Robust Tracking
The visual robust tracking is an acid test for existing methods since the target with large-dynamic-change scenarios. Specifically, this paper presents neural aided Bayesian filtering scheme which is based on Monte Carlo resampling techniques associated with lower particles hypothesis to addresses the computational intensity that is intrinsic to all particle filter (PF) approaches, including th...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004